SHORT COMMUNICATION

NEOFLAVANOIDS OF DALBERGIA CULTRATA*

D. M. X. DONNELLY, J. O'REILLY and J. THOMPSON

Department of Chemistry, University College, Belfield, Dublin 4, Republic of Ireland

(Received 25 August 1971)

Abstract—In addition to the known neoflavanoids (S)-4-methoxydalbergione, dalbergin, and stevenin, the heartwood of *Dulbergia cultrata* Grah, contains a new 3,3-diphenylprop-1-ene (Ia). The assigned structure is based on data acquired mainly by physical methods. The softwood of *D. ferruginea* Roxb.† yielded sitosteroi and friedelin.

INTRODUCTION

Dalbergia cultrata Grah. (Leguminosae-Lotoideae), a moderate sized deciduous tree indigenous to the forests of Burma, belongs to a family of plants known to contain neo-flavanoids.²

We now report results of a phytochemical study on the presently available sample (17.3 g) of the heartwood.

Besides fatty acids, fractionation of the *n*-hexane extract gave (S)-4-methoxydalbergione^{2,3} (II), dalbergin⁴ (IIIa) and a compound isolated as its O-diacetate which is assigned structure (Ib). The ethanol extract yielded stevenin⁵ (IIIb) (3',6-dihydroxy-7-methoxy-4-phenylcoumarin) and a further sample of the phenol (Ia).

RESULTS AND DISCUSSION

The spectroscopic properties of (S)-4-methoxydalbergione, dalbergin and stevenin easily permitted their identification and this was confirmed by comparison with authentic specimens isolated from other *Dalbergia* species.

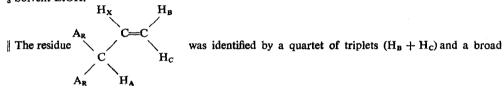
The O-diacetate (Ib) has UV $[\lambda_{\max}^{MeOH} 285 \text{ nm} (\log \epsilon 3.7), 233 \text{ nm} (\log \epsilon 4.1)\text{sh.}]$ and mass spectra which showed features common to 3,3-diphenylprop-1-enes. Its structure as 3-(5-acetoxy-2,4-dimethoxyphenyl)-3-(3'-acetoxyphenyl)prop-1-ene is defined by its NMR spectrum. A comparison (see Table 1) with the spectra of model compounds indicates the

^{*} Part VIII of the series "Dalbergia Species". For Part VII see B. J. Donnelly, D. M. X. Donnelly A. M. O'Sullivan and J. P. Prendergast, *Tetrahedron* 25, 4409 (1969).
† syn. Dalbergia stipulacea F. -Vill. Merr. En. Philip Fl. PL 2, 294 (1923).

¹ J. S. Gamble, A Manual of Indian Timbers, p. 253, Sampson Low, Marston, London (1922).

² W. B. EYTON, W. D. OLLIS, I. O. SUTHERLAND, O. R. GOTTLIEB, M. TAVEIRA MAGALHÄES and L. M. JACKMAN, *Tetrahedron* 21, 2683 (1965).

³ B. J. Donnelly, D. M. X. Donnelly and C. B. Sharkey, Phytochem. 4, 337 (1965).


⁴ V. K. AHLUWALIA, P. L. SAWHNEY and T. R. SESHADRI, J. Sci. Industr. Res. 15B, 66 (1956).

⁵ This compound was isolated from *Dalbergia stevensonii* Standl. and was synthesized. Details of this work will be published shortly.

TABLE 1. ORD, UV AND NMR (7, CDCl₃, J in Hz) data for compound (Ib) and model compounds

				ORD*				UV λ	max*	
Compound		m.p.		{φ }		λ (nm)	$a \times 10^{-2}$	² (nm)	log €	
(R)-2'-O-Acetyl-		91–92°		-1420tr 287† \			-30	293	3.72	
5-O-methyllatifolin					30sh	282 }	50	232i	3.93	
(IVc)					80pk	250	+401	214	4.27	
(D) 2 4 D:	math arre	L	n 100°/	-33,3		224				
(R)-3,4-Dimethoxy-dalbergione quinol		b.p. 100°/ 10 ⁻³ mm		−420tr +340sh		263	-7	270	3·00§	
diacetate (IVb)		10 mm		+715pk		242				
ulacciale (1 v u)				+4800tr		226	+55			
(S)-4,4'-Dimethoxy-		113-114°					278	3.31§		
dalbergione quinol		•							0	
diacetate (
(R)-2',5-O-Diacetyl-		124°		+6400i +12,700pk -46,200tr		278†	55	285	3.62	
latifolin (IVa)						254 }	33	203	3.02	
						242 218 }	+589	230i	3.98	
Diacetate (Ib)		93–95°		−4460 −2240sh		296‡		285	3.7	
						279 248]				
				-15,600tr +49,000pk		225	-646	233	4.1	
				1 42,0	oopk					
				Locatio	n of prote	ons [
		Ring A		•		-		Ring	Ring B	
2		3		4	4 5		6			
				014	24	~	**			
OMe	OAc	OMe	H	OMe	OAc	OMe	Н			
6.24			3.46	6.18		6.15	3.3	2.94 (4		
								7.8 (2'-0		
	7.9	6.12	_	6.12	7.72	_	3.3	2.5-2.9		
	7.9		3.3	6.25	7.7		3.2	2.85 (2), 3		
							J	9.0 Hz; A ₂		
			2 45	<i>(</i> 10	7.7		2.2	6.25 (4'		
6.24			3.45	6.18	7-7		3.2	2.6-3.0		
								7.8 (2'-	UAU	
6-24			3.46	6.18	7-7		3-2	2.6-3.15	(1)m	

pk = peak; tr = trough; sh = shoulder; i = inflection. * Solvent MeOH.

doublet (H_A) $\{\tau \cdot 4.5-5.5\}$ and a multiplet (H_X) $\{\tau \cdot 3.6-4.2\}$.

[†] Ref. 8.

[‡] Concentration 0.982 mg/3 ml; cell path-length 0.1 cm. § Solvent EtOH.

similarity of its A-ring with accompanying substitution pattern to that of the A-ring in 2',5-O-diacetyllatifolin⁶ (IVa).

The para protons (A-ring) in compounds (Ib) and (IVa) resonate as singlets and their chemical shift values (τ 3·2 and 3·46) compare favourably as do the methoxyl proton shifts on solvation (CDCl₃ \rightarrow C₆D₆).⁷ The location of the hydroxy-group at position-3' in ring B is based on the following facts: (a) the non-existence of an A₂B₂ pattern for the four aromatic protons (compare with compound V); (b) the dissimilarity to 2',5-O-diacetyllatifolin (IVa); and (c) the similarity of oxygenation pattern in the co-occurring 4-phenyl-coumarin, stevenin (IIIb). The absolute (S)-configuration is assigned to compound (Ib) from analysis of the Cotton effects in its ORD curve. ORD curves for 2',5-O-diacetyllatifolin (IVa) and several quinol diacetates related to 4-methoxydalbergione have been studied.⁸ The co-occurring 4-methoxydalbergione in D. cultrata has an absolute (S)-configuration.

On receipt of a further sample of the heartwood a more detailed study shall be undertaken. We have also examined the softwood of *D. ferruginea* Roxb. sitosterol and friedelin⁹ were isolated, and shown to be identical with authentic samples.

⁶ C. B. DEMPSEY, D. M. X. DONNELLY and R. A. LAIDLAW, Chem. & Ind. 491 (1963).

⁷ A. Pelter and P. I. Amenechi, J. Chem. Soc. C, 887 (1969).

⁸ D. M. X. Donnelly, B. J. Nangle, P. B. Hulbert, W. Klyne and R. J. Swan, *J. Chem. Soc.* C, 2450 (1967).

⁹ O. R. GOTTLIEB, A. M. BITTENCOURT and M. TAVEIRA MAGALHÃES, Anais da Assoc. Brazil de Quinca 21, 33.

EXPERIMENTAL

M.ps were measured on a Kofler hot-stage apparatus and are uncorrected. 60 MHz NMR spectra were measured in CDCl₃ (Me₄Si as internal reference). Merck Kiselgel G was used for TLC.

Examination of D. cultrata heartwood. (a) The powdered heartwood (17·3 g) was continuously extracted with hot n-hexane. The residue (1·1 g), when freed from solvent, was chromatographed on silica (70 g) with CHCl₃ as eluent. The first cut gave a fatty material, which on GLC analysis of the CH₂N₂ treated fraction showed the presence of a series of n-saturated acids (C₁₉-C₂₇ inclusive). GLC peaks were identified by direct comparison with standards (arachidic, behenic and lignoceric methyl esters).

The second fraction was crystallized from n-hexane yielding (S)-4-methoxydalbergione (180 mg) as yellow needles (m.p., mixed m.p., $[a]_D$, IR and NMR). A later fraction yielded dalbergin (15 mg) (m.p., mixed

m.p., NMR); its acetate, (m.p., mixed m.p.).

(b) The residual heartwood was further extracted with cold ethanol. The ethanol extract was concentrated and re-extracted with CHCl₃. The solvent was evaporated and the residue (3·5 g) was chromatographed on silica giving the following fractions with the indicated eluents: I (CHCl₃), II (CHCl₃-acetone, 9:1), III (CHCl₃-acetone, 3:1). Fraction I gave a further quantity of (S)-4-methoxydalbergione and dalbergin. Fraction II (20 mg) was crystallized from a mixture of benzene-acetone in needles, m.p. 250-254° (decomp.) diethyl ether m.p. 123° (EtOH) (UV, TLC, (six solvents) identical with sample of stevenin diethyl ether).

Fraction III was plated (solvent CHCl₃) and the major component eluted (NMR spectrum τ 3·54, 4·95 s (2 × OH) exchangeable D₂O). Acetylation (Ac₂O-pyridine), TLC (solvent CHCl₃), and subsequent elution of the deep purple band gave a solid which crystallized from benzene-light petroleum (b.p. 60-80°) as prisms (25 mg) m.p. 93-95°, [a]_D^{21°} + 8·25° (CHCl₃). (Found: C, 67·73; H, 5·7; M⁺-370. C₂₁H₂₂O₆ requires C, 68·1; H, 5·9%).

Examination of D. ferruginea softwood. The powdered softwood (2.5 kg) was exhaustively extracted with n-hexane (72 hr) and subsequently with benzene. Evaporation of the solvents gave a dark yellow oil (38 g). An aliquot (14 g) was chromatographed over silica (800 g). The column was developed with CHCl₃: friedelin, $C_{30}H_{50}O$ as needles from di-isopropyl ether, m.p. 250° (mixed m.p.; $[a]_D$, mass of triterpene); sitosterol, $C_{29}H_{50}O$ as needles from Et₂O m.p. 145° (mixed m.p.; $[a]_D$, mass IR of sterol).

Acknowledgements—The authors are indebted to Dr. M. Monsalud, University of the Philippines and Dr. Napong Tonanonta, Royal Forest Department Thailand for collecting the materials; to Dr. J. B. Thomson for samples of sitosterol and friedelin; to Dr. P. M. Scopes for ORD analysis; to the Minister for Education, Republic of Ireland, for award of a maintenance grant (to J.T.) and to Professor E. M. Philbin for her constant interest.

Key Word Index—Dalbergia cultrata; Leguminosae; neoflavanoids; 3,3-diphenylprop-l-ene; Dalbergia erruginea; sitosterol; friedelin.